Пластический и энергетический обмен

В организм поступают воздух, вода и пища. В нем эти вещества преобразуются, и из организма выделяются излишки тепла, продукты обмена и непереваренные остатки пищи.

Обмен веществ — это совокупность всех химических изменений и всех видов превращений веществ и энергии в организме, обеспечивающих его развитие, жизнедеятельность, самовоспроизведение и связь с окружающей средой.

https://www.youtube.com/watch?v=ytaboutru

Общие сведения об обмене веществ в организме приведены в статье «ОБМЕН ВЕЩЕСТВ И ПРЕВРАЩЕНИЕ ЭНЕРГИИ В КЛЕТКЕ«.

❖ Основные виды обмена веществ:■ пластический обмен (ассимиляция, анаболизм) и■ энергетический обмен (диссимиляция, катаболизм).

Пластический обмен (или ассимиляция, анаболизм) — это совокупность биохимических реакций образования сложных биополимеров из простых молекул, приводящих к обновлению структурных частей клеток и тканей и требующих затрат энергии.

■ поступление из внешней среды веществ, необходимых организму;

Суточная потребность человека в некоторых витаминах (мг)

■ превращение поступивших веществ в соединения, приемлемые для тканей организма;

■ синтез сложных биополимеров (белков, нуклеиновых кислот и др.) из простых органических молекул;

■ синтез структурных единиц клеток и замена устаревших структурных частей клеток и тканей;

■ отложение (депонирование) в организме запасов питательных веществ.

■ расщепление энергоемких соединений (углеводов, жиров, некоторых белков) и высвобождение заключенной в них энергии; при этом часть выделяемой энергии рассеивается в виде тепла, а часть запасается в форме высокоэнергетических фосфатных связей молекул АТФ, которые в дальнейшем обеспечивают энергией синтез необходимых организму молекул органических веществ, поддержание жизнедеятельности организма и совершение им работы (мышечной и умственной);

■ расщепление сложных биополимеров (белков, углеводов) до простых соединений, служащих исходным материалом для синтеза сложных биополимеров в процессе ассимиляции;

■ распад устаревших тканевых элементов;

■ выведение продуктов распада из организма;

■ мобилизация запасов организма.

https://www.youtube.com/watch?v=ytpolicyandsafetyru

Процессы ассимиляции и диссимиляции взаимосвязаны и в организме протекают одновременно. При этом в различные периоды жизнедеятельности какой-то из видов обмена может преобладать.

Например, в период интенсивного роста организма преобладают процессы пластического обмена, а во время совершения интенсивной физической работы — процессы энергетического обмена.

1. Ассимиляция

Особенно значительны различия в обмена веществ у представителей разных групп организмов в начальных этапах процесса ассимиляции. Как полагают, первичные организмы использовали для питания органического вещества, возникшие абиогенным путём; при последующем развитии жизни у некоторых из живых существ возникла способность к синтезу органических веществ.

По этому признаку все организмы могут быть разделены на гетеротрофов и автотрофов. У гетеротрофов, к которым принадлежат все животные, грибы и многие виды бактерий, Обмен веществ основан на питании готовыми органическими веществами. Правда, они обладают способностью усваивать некоторое, сравнительно незначительное, количество CO2, используя его для синтеза более сложных органических веществ.

Однако этот процесс совершается гетеротрофами только за счёт использования энергии, заключённой в химических связях органических веществ пищи. Автотрофы (зелёные растения и некоторые бактерии) не нуждаются в готовых органических веществах и осуществляют их первичный синтез из входящих в их состав элементов.

Некоторые из автотрофов (серобактерии, железобактерии и нитрифицирующие бактерии) используют для этого энергию окисления неорганических веществ. Зелёные растения образуют органические вещества за счёт энергии солнечного света в процессе фотосинтеза — основного источника органического вещества на Земле.

Обмен белков

Молекулы белков образуются из молекул 20 различных аминокислот, соединяющихся между собой в той или иной последовательности посредством пептидных связей. Каждому белку соответствует определенное количество каждой из этих аминокислот и определенная последовательность их соединения в полипептидную цепь.

■ Такая специфичность в наборе белков делает организм очень чувствительным к чужеродным белкам, которые при попадании во внутреннюю среду организма вызывают немедленную негативную реакцию его иммунной системы.

■ транспортная (гемоглобин переносит О2);

■ защитная (входят в состав клеточных мембран; белковые антитела участвуют в иммунном процессе);

■ каталитическая (все ферменты — белки);

■ двигательная (актин и миозин — сократительные белки мышц);

■ регуляторная (гормоны, участвующие в регуляции процессов жизнедеятельности организма, — белки);

■ энергетическая (при расщеплении 1 г белка выделяется 17,6 кДж энергии);

■ являются строительным материалом (основной компонент соединительной ткани);

https://www.youtube.com/watch?v=ytadvertiseru

■ входят в состав различных органелл клеток;

■ определяют индивидуальные особенности организма.

Обмен веществ в организме человека

Поступившие с пищей белки в желудочно-кишечном тракте расщепляются на аминокислоты, которые всасываются в кровь и поступают по воротной вене в печень, а затем разносятся к тканям и органам. Большая часть аминокислот используется клетками для образования собственных белков. Небольшая часть аминокислот подвергается расщеплению с выделением энергии. Некоторые необходимые человеку (незаменимые) аминокислоты его организмом не синтезируются.

О незаменимых аминокислотах и полноценных белках см. статью «Основы рационального питания«.

❖ Таким образом, обмен белков состоит в расщеплении не свойственных организму (чужеродных) или поврежденных собственных белков и синтезе белков, необходимых организму.

■ так как аминокислоты не образуются ни из жиров, ни из углеводов, то недостаток белков в пище невосполним;

■ в запас в организме белки не откладываются;

■ у взрослого человека общее количество синтезируемых белков равно количеству расщепляемых; однако у детей в связи с ростом их тела синтез белков превышает их распад.

Конечные продукты обмена белков: вода, углекислый газ, аммиак NH3 (в печени превращается в мочевину), мочевина, мочевая кислота, сероводород H2S и различные азотистые соединения; они выводятся из организма с мочой, потом и выдыхаемым воздухом.

Рекомендация Всемирной организации здравоохранения: взрослый человек должен ежедневно употреблять не менее 0,75 г белка на 1 кг массы тела; в период роста организма потребность в белках значительно выше.

В настоящее время аминокислотный состав белков различных пищевых продуктов изучен достаточно хорошо, поэтому имеется возможность так комбинировать продукты питания, чтобы человек получал все жизненно необходимые аминокислоты в нужных количествах и сочетаниях.

Все биохимические процессы, совершающиеся в организме, тесно связаны друг с другом. Взаимосвязь обмена белков с окислительно-восстановительными процессами осуществляется различным образом. Отдельные биохимические реакции, лежащие в основе процесса дыхания, происходят благодаря каталитическому действию соответствующих ферментов, то есть белков.

взаимодействуя с NH3 и соответствующим ферментом, она даёт важную аминокислоту a-аланин. Теснейшая связь процессов брожения и дыхания с обменом липидов в организме проявляется в том, что фосфоглицериновый альдегид, образующийся на первых этапах диссимиляции углеводов, является исходным веществом для синтеза глицерина.

Предлагаем ознакомиться  Как заварить овес для чистки организма

2. Диссимиляция

Источником энергии, необходимой для поддержания жизни, роста, размножения, подвижности, возбудимости и других проявлений жизнедеятельности, являются процессы окисления части тех продуктов расщепления, которые используются клетками для синтеза структурных компонентов.

Наиболее древним и поэтому наиболее общим для всех организмов является процесс анаэробного расщепления органических веществ, осуществляющийся без участия кислорода. Позднее этот первоначальный механизм получения энергии живыми клетками дополнился окислением образующихся промежуточных продуктов кислородом воздуха, который появился в атмосфере Земли в результате фотосинтеза. Так возникло внутриклеточное, или тканевое дыхание.

Обмен углеводов

Обмен углеводов представляет собой совокупность процессов превращения углеводов в организме.

■ энергетическая: углеводы — основной источник энергии для организма (глюкоза);

https://www.youtube.com/watch?v=ytcopyrightru

■ структурная (входят в состав нуклеиновых кислот, полисахаридов и цитоплазмы; необходимы для образования новых клеток);

■ без глюкозы невозможна нормальная работа мозга;

Продукты, улучшающие обмен веществ (метаболизм)

■ глюкоза в крови участвует в регуляции осмотического давления.

Снижение количества глюкозы в плазме крови с 0,1 до 0,08% приводит к нарушениям в деятельности нервной системы, сердца, мышц, а до 0,05% — к потере сознания, судорогам и смерти.

При окислении 1 г глюкозы в присутствии кислорода образуется двуокись углерода и вода и выделяется 17,6 кДж энергии, которая расходуется на образование молекул АТФ и на поддержание постоянной температуры тела. При распаде 1 г АТФ на аде-нозиндифосфорную кислоту и фосфат Н3РО4 выделяется 0,17 кДж энергии, которая расходуется на мышечные сокращения, активный мембранный транспорт или синтез органических молекул.

■ Возможен распад глюкозы без участия кислорода (такой режим реализуется, например, во время спринтерского бега), когда количество выделяемой энергии относительно невелико, но образуется она очень быстро.

В организм углеводы попадают в виде полисахаридов (крахмала, гликогена), дисахаридов (сахара) и моносахаридов. В течение жизни человек потребляет около 10 т углеводов в составе, в основном, пищи растительного происхождения — хлеба, овощей, фруктов, круп, макаронных изделий; в продуктах животного происхождения (за исключением молока) углеводов мало.

В пищеварительном тракте человека под воздействием ферментов слюны, поджелудочного и кишечного соков сложные углеводы распадаются до моносахаридов (важнейший из них — глюкоза), которые всасываются в ворсинки тонкого кишечника, откуда они попадают в кровь и поступают в клетки тканей и органов.

Схема обмена веществ

В крови содержание глюкозы поддерживается на относительно постоянном уровне. При увеличении ее концентрации избыток глюкозы превращается (в печени и частично в мышцах) в гликоген и откладывается «про запас», при снижении концентрации гликоген распадается с высвобождением глюкозы.

■ При избытке потребления углеводов многие из них превращаются в жиры и откладываются в запас, при недостатке потребления они образуются в организме из белков и жиров.

В регуляции концентрации глюкозы в крови главная роль принадлежит гормонам поджелудочной железы и надпочечников.

Продукты распада углеводов — вода и двуокись углерода; выводятся из организма через почки (Н2О) и легкие (СО2).

Обмен воды и минеральных веществ

Обмен воды и минеральных веществ (водно-солевой обмен) — совокупность физико-химических процессов распределения воды и ионов химических элементов и неорганических веществ между организмом и внешней средой, а также между жидкими фазами организма.

Вода составляет около 65% массы тела взрослого человека (у детей — до 80%); она растворяет питательные вещества, поступающие в организм, принимает участие практически во всех обменных реакциях, является важнейшим компонентом внутренней среды (составляет основную часть плазмы крови, лимфы, тканевой жидкости) и транспортным средством (переносит растворы веществ по всему организму), входит в состав пищеварительных соков, участвует в регуляции температуры тела (при ее испарении с поверхности кожи тело охлаждается) и т.д.

Водный баланс — это отношение количества воды, потребленной организмом за сутки, к количеству воды, выделенной им за то же время.

https://www.youtube.com/watch?v=ytdevru

■ При комфортной температуре окружающей среды ( 20 °С) для нормальной жизнедеятельности организма человеку в сутки необходимо 2—2,5 л воды.

■ Поступление воды должно полностью покрывать ее расход.

■ Без воды человек может прожить не более 14 дней.

В организм вода поступает при питье (около 1 л) и с жидкой пищей (около 1 л) и последующем ее всасывании из пищеварительного тракта; часть воды (300—350 мл) образуется в самом организме при обмене белков, жиров и углеводов.

■ почками в составе мочи (1,2—1,5 л);

■ потовыми железами через кожу с потом (500-700 мл);

■ легкими в виде водяных паров (в среднем 350 мл воды, а при частом и глубоком дыхании — до 700-800 мл);

■ через кишечник с калом (в норме так выводится 100-150 мл воды; при расстройстве всасывания воды — диарее — выведение жидкости резко возрастает, что может привести к обезвоживанию организма).

■ железо является важнейшим компонентом гемоглобина;

■ йод входит в состав гормонов щитовидной железы;

■ калий, натрий, кальций и хлор (ионы К , Na , Са2 , С1—) необходимы для возбуждения нервных и мышечных клеток;

■ кальций, кроме того, обеспечивает нормальное сокращение мышц, влияет на свертываемость крови, участвует в обмене белков и жиров, его соли входят в состав костной ткани;

■ кобальт содержится в витамине В12;

■ магний входит в состав костей;

■ медь содержится в составе многих ферментов, обеспечивающих работу нервной системы;

■ натрий и хлор (ионы Na , С1—) создают осмотическое давление, влияющее на распределение воды между клетками;

■ фосфаты входят в состав ДНК, РНК, АТФ, костей;

https://www.youtube.com/watch?v=ytpressru

■ фтор входит в состав дентина и эмали;

■ хлор входит в состав соляной кислоты желудочного сока.

В сутки в организм человека должно поступать не менее 8 г натрия, 5 г хлора, 3 г калия, 2 г фосфора, 1 г кальция, 0,2 г железа.

Витамины — низкомолекулярные органические вещества, обладающие высокой биологической активностью и необходимые для нормальной жизнедеятельности организма.

■ они входят в состав молекул многих ферментов и некоторых физиологически активных веществ;

Предлагаем ознакомиться  Что сжигает жир в организме у женщин

■ регулируют процессы обмена веществ;

■ действуют в малых количествах;

■ являются непрочными соединениями: быстро разрушаются при нагревании пищевых продуктов;

■ не являются (в отличие от белков, углеводов и жиров) источником энергии или материалом для биосинтеза.

Существование витаминов установлено в 1881 г. русским врачом Н.И. Луниным в опытах по питанию животных чистыми жирами, углеводами и белками; впервые в чистом виде витамин (тиамин) получен польским ученым К. Функом в 1912 г.

В настоящее время известно около 80 витаминов. Их обозначают заглавными буквами латинского алфавита: А, В1 В2, В6, В12, С, D, Е, Н, К, Р.

Источником большинства витаминов служат растения; человек и животные получают такие витамины с пищей (как растительной, так и животной). Некоторые витамины вырабатываются микрофлорой кишечника.

❖ Заболевания, обусловленные ненормальным содержанием витаминов в организме, — авитаминозы, гиповитаминозы и гипервитаминозы; они сопровождаются нарушением обмена веществ.

Авитаминозы — заболевания, вызванные отсутствием в организме тех или иных витаминов.

Гиповитаминозы — заболевания, вызванные длительной нехваткой в пище витаминов или плохим их усвоением организмом.

Гипервитаминозы — заболевания, вызванные избыточным поступлением витаминов в организм; чаще всего развиваются при бесконтрольном приеме синтетических витаминных препаратов или при приеме в пищу продуктов, содержащих большое количество того или иного витамина (например, чрезмерное употребление овощей, печени морских животных может вызвать гиперви-таминоз А).

■ Гипервитаминозы проявляются как тяжелые отравления организма. Наиболее токсичны витамины А, В12 и D (так, витамин В12 в больших дозах вызывает сильные аллергические реакции).

❖ Две основные группы витаминов: растворимые в жирах и растворимые в воде.

❖ Жирорастворимые витамины (витамины A, D, Е, К).

Витамин А (ретинол) участвует в окислительно-восстановительных реакциях; необходим для обеспечения роста организма, развития эпителиальной, костной, нервной ткани, для синтеза зрительного пигмента родопсина и др. Необходимая человеку суточная доза 1,0-1,5 мг. Витамин А содержится в животной пище — молоке, сливочном масле, печени крупного рогатого скота, рыбьем жире.

https://www.youtube.com/watch?v=ytcreatorsru

■ Признаки гипо- и авитаминоза А: задержка роста у детей, нарушение формирования зубов и волос, сухость и помутнение роговицы глаза, «куриная слепота» (нарушение сумеречного зрения), сухость кожи, снижение устойчивости эпителиальных клеток к раздражающим факторам и, как следствие, появление на коже язв, снижение сопротивляемости к заболеваниям.

Витамин D (кальциферол) стимулирует образование костной ткани, регулирует обмен кальция и фосфора; содержится в рыбьем жире, печени, желтке куриного яйца; образуется в коже из эргостерина под действием ультрафиолетовых лучей. Необходимая суточная доза: у детей — 0,0125 мг, у взрослых — 0,003-0,005 мг.

■ При гипо- и авитаминозе D развивается рахит; его признаки: понижение содержания кальция в костях, у детей наблюдается незарастание родничков, замедление роста зубов, происходит размягчение, а затем искривление костей ног, деформация грудной клетки, резкое ослабление мускулатуры; повышается восприимчивость к инфекциям.

■ Для предупреждения и лечения рахита используется облучение тела кварцевой лампой в сочетании с приемом специальных витаминных препаратов и продуктов, богатых витамином D.

Витамин Е (токоферол) является антиоксидантом (антиокислителем), участвует в функциональной активности мышц и половой системы; содержится в зародышах пшеницы, ржаной муке, зеленых овощах, печени. Необходимая суточная доза — 10-12 мг.

■ При недостатке в организме витамина Е наблюдается мышечная дистрофия, нарушения беременности.

Витамин К1 (филлохинон) участвует в синтезе протромбина; содержится в зеленых листьях капусты, салата и крапивы, в моркови, томатах, свиной печени; синтезируется кишечной микрофлорой. Необходимая суточная доза — 1 мг.

■ При недостатке витамина К1 ухудшается свертываемость крови, появляются кровоточивость и кровоизлияния.

Водорастворимые витамины (витамины группы В, в которую входит более 15 витаминов, а также витамины С, Р, Н). Витамин Bi (тиамин) участвует в процессах тканевого дыхания (цикле Кребса), в регуляции обмена белков, жиров и углеводов, повышает активность ферментов, обеспечивающих использование продуктов неполного окисления, важен для работы нервной и мышечной систем.

■ При гипо- и авитаминозе В1 происходит накопление недооки-сленных продуктов в мышечной и нервной системах, что вызывает болезнь «бери-бери» («ножные оковы»), которая сопровождается сердечно-сосудистыми нарушениями, отеками, воспалениями нервов и нарушением проводимости по нервным волокнам, приводящим к судорогам, атрофии мышц и параличу конечностей.

Витамин В2 (рибофлавин) участвует в окислительно-восстановительных реакциях и регуляции обмена веществ; содержится в пивных дрожжах, пшеничных отрубях, в печени, сердце, молоке, яйцах, томатах, шпинате, капусте и др. Необходимая суточная доза — 2-3 м г.

■ Признаки гипо- и авитаминоза В2: поражение роговицы и хрусталика глаза, нарушение зрения, повреждение слизистых оболочек полости рта, задержка роста, нарушение углеводного обмена, дерматит.

Витамин В5 (пантотеновая кислота) входит в состав коэнзима А; содержится в зерновых, бобовых, печени, яйцах. Необходимая суточная доза — 5-10 мг.

■ При гипо- или авитаминозе В5 наблюдаются дерматозы, нарушение нервно-мышечной координации и процессов роста.

https://www.youtube.com/watch?v=https:accounts.google.comServiceLogin

Витамин В6 (пиридоксин) участвует в азотистом и жировом обмене, синтезе серотонина, в регуляции обмена аминокислот. Содержится в дрожжах, зерновых и бобовых культурах, мясе, сыре, рыбе; синтезируется микрофлорой кишечника. Необходимая суточная доза — 2,5-3,5 мг.

■ Признаки гипо- и авитаминоза В6: потеря аппетита, повышенная раздражительность, сонливость, дерматиты на лице, нарушения белкового обмена.

Витамин В9 (фолиевая кислота) участвует в обмене нуклеиновых кислот; содержится в печени, почках, сырах, яйцах, белой рыбе. Необходимая суточная доза — 0,4-0,6 мг.

■ При недостатке в организме фолиевой кислоты развивается анемия (сложная форма малокровия), особенно у беременных женщин.

Витамин В12 (цианкобаламин) участвует в синтезе РНК, в регуляции обмена белков, жиров и углеводов; содержится в печени рыб, свиней, крупного рогатого скота, в мясе, твороге, сырах, яйцах; вырабатывается микроорганизмами кишечника. Необходимая суточная доза — 2-4 мг.

Регуляция обмена веществ

Удивительная согласованность и слаженность процессов обмена веществ в живом организме достигается путём строгой и пластичной координации обмена веществ как в клетках, так и в тканях и органах. Эта координация определяет для данного организма характер обмена веществ, сложившийся в процессе исторического развития, поддерживаемый и направляемый механизмами наследственности и взаимодействием организма с внешней средой.

Регуляция обмена веществ на клеточном уровне осуществляется путём регуляции синтеза и активности ферментов. Синтез каждого фермента определяется соответствующим геном. Различные промежуточные продукты обмена веществ, действуя на определённый участок молекулы ДНК, в котором заключена информация о синтезе данного фермента, могут индуцировать (запускать, усиливать) или, наоборот, репрессировать (прекращать) его синтез.

Предлагаем ознакомиться  Продукты усиливающие метаболизм в организме

Так, кишечная палочка при избытке изолейцина в питательной среде прекращает синтез этой аминокислоты. Избыток изолейцина действует двояким образом: а) угнетает (ингибирует) активность фермента треониндегидратазы, катализирующего первый этап цепи реакций, ведущих к синтезу изолейцина, и б) репрессирует синтез всех ферментов, необходимых для биосинтеза изолейцина (в том числе и треониндегидратазы). Ингибирование треониндегидратазы осуществляется по принципу аллостерической регуляции активности ферментов.

Предложенная французскими учёными Ф. Жакобом и Ж. Моно теория генетической регуляции рассматривает репрессию и индукцию синтеза ферментов как две стороны одного и того же процесса. Различные репрессоры являются в клетке специализированными рецепторами, каждый из которых “настроен” на взаимодействие с определённым метаболитом, индуцирующим или репрессирующим синтез того или иного фермента.

Важнейшую роль в регуляции обмена веществ и энергии в клетках играют белково-липидные биологические мембраны, окружающие протоплазму и находящиеся в ней ядро, митохондрии, пластиды и другие субклеточные структуры. Поступление различных веществ в клетку и выход их из неё регулируются проницаемостью биологических мембран.

Значительная часть ферментов связана с мембранами, в которые они как бы “вмонтированы”. В результате взаимодействия того или иного фермента с липидами и другими компонентами мембраны конформация его молекулы, а следовательно, и его свойства как катализатора будут иными, чем в гомогенном растворе, Это обстоятельство имеет огромное значение для регулирования ферментативных процессов и обмена веществ в целом.

Важнейшим средством, с помощью которого осуществляется регуляция обмена веществ в живых организмах, являются гормоны. Так, например, у животных при значительном понижении содержания caxapa в крови усиливается выделение адреналина, способствующего распаду гликогена и образованию глюкозы. При избытке сахара в крови усиливается секреция инсулина, который тормозит процесс расщепления гликогена в печени, вследствие чего в кровь поступает меньше глюкозы.

Благодаря совокупности тесно связанных между собой биохимических реакций, составляющих обмен веществ, осуществляется взаимодействие организма со средой, являющееся непременным условием жизни. Ф. Энгельс писал: “Из обмена веществ посредством питания и выделения… вытекают все прочие простейшие факторы жизни…

” (“Анти-Дюринг”, 1966, с. 80). Таким образом развитие (онтогенез) и рост организмов, наследственность и изменчивость, раздражимость и высшая нервная деятельность — эти важнейшие проявления жизни могут быть поняты и подчинены воле человека на основе выяснения наследственно обусловленных закономерностей обмена веществ и сдвигов, происходящих в нём под влиянием меняющихся условий внешней среды (в пределах нормы реакции данного организма).

■ нервный (ведущий) — под управлением центральной нервной системы; высшим подкорковым центром регуляции обмена веществ является гипоталамус;

■ гормональный — гормонами щитовидной и поджелудочной желез, надпочечников и др.

■ прямое влияние на обмен белков оказывает соматотропный гормон гипофиза;

■ опосредованное влияние осуществляется путем увеличения выработки передней долей гипофиза тиреотропного гормона, который приводит к увеличению синтеза щитовидной железой специфических регуляторов белкового обмена — тироксина и трийодтиронина.

♦ Регуляция обмена жиров осуществляется гипоталамусом путем контроля деятельности щитовидной и половых желез.

■ нервная регуляция осуществляется гипоталамусом через автономную нервную систему, симпатический отдел которой стимулирует мозговой слой надпочечников, выделяющий адреналин;

■ гормональная регуляция осуществляется поджелудочной железой, гормон инсулин которой способствует выводу углеводов из кровеносного русла в запас; другие гормоны, вырабатываемые различными железами, обеспечивают обратный процесс — выход глюкозы в кровь.

6. Нарушения обмена веществ

Любое заболевание сопровождается нарушениями обмена веществ. Особенно отчётливы они при расстройствах трофической и регуляторной функций нервной системы и контролируемых ею желёз внутренней секреции. Обмен веществ нарушается также при ненормальном питании (избыточный или недостаточный и качественно неполноценный пищевой рацион, например недостаток или избыток витаминов в пище и другое).

Выражением общего нарушения обмена веществ (а тем самым и обмена энергии), обусловленного изменением интенсивности окислительных процессов, являются сдвиги в основном обмене. Повышение его характерно для заболеваний, связанных с усиленной функцией щитовидной железы, понижение — с недостаточностью этой железы, выпадением функций гипофиза и надпочечников и общим голоданием.

Нарушения обменов веществ выражаются в недостаточном или избыточном накоплении веществ, участвующих в обмене, в изменении их взаимодействия и характера превращений, в накоплении промежуточных продуктов обмена веществ, в неполном или избыточном выделении продуктов и в образовании веществ, не свойственных нормальному обмену.

Так, диабет сахарный характеризуется недостаточным усвоением углеводов и нарушением их перехода в жир; при ожирении происходит избыточное превращение углеводов в жир; подагра связана с нарушением выделения из организма мочевой кислоты. Избыточное выделение с мочой мочекислых, фосфорнокислых и щавелевокислых солей может привести к выпадению этих солей в осадок и к развитию почечнокаменной болезни.

Недостаточное выделение ряда конечных продуктов белкового обмена вследствие некоторых заболеваний почек приводит к уремии. Накопление в крови и тканях ряда промежуточных продуктов обмена веществ (молочной, пировиноградной, ацетоуксусной кислот) наблюдается при нарушении окислительных процессов, расстройствах питания и авитаминозах;

нарушение минерального обмена может привести к сдвигам кислотно-щелочного равновесия. Расстройство обмена холестерина лежит в основе атеросклероза и некоторых видов желчнокаменной болезни. К серьёзным расстройствам обмена веществ следует отнести нарушение усвоения белка при тиреотоксикозе, хроническом нагноении, некоторых инфекциях;

Диагностика нарушений обмена веществ основывается на исследовании газообмена, соотношения между количеством того или иного поступающего в организм вещества и выделением его, определении химических составных частей крови, мочи и других выделений. Для изучения нарушений обмена веществ вводят изотопные индикаторы (например, радиоактивный йод — главным образом 131I — при тиреотоксикозе).

https://www.youtube.com/watch?v=upload

Органические вещества, входящие в состав всех живых существ (животных, растений, грибов и микроорганизмов), представлены в основном аминокислотами, углеводами, липидами (часто называемые жирами) и нуклеиновыми кислотами. Так как эти молекулы имеют важное значение для жизни, метаболические реакции сосредоточены на создании этих молекул при строительстве клеток и тканей или разрушении их с целью использования в качестве источника энергии. Многие важные биохимические реакции объединяются вместе для синтеза ДНК и белков.